

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 592 (1999) 136-146

Journal ofOrgano metallic Chemistry

Reaktionen von Trimethylsiloxychlorsilanen (Me₃SiO)Me_{2-n}Ph_nSiCl (n = 0, 1, 2) mit Lithium—Bildung von Trimethylsiloxy-substituierten Silyl- und Disilanyllithiumverbindungen sowie Di- und Trisilanen

Jörg Harloff^a, Eckhard Popowski^{a,*}, Hans Fuhrmann^b

^a Fachbereich Chemie der Universität Rostock, Buchbinderstraße 9, D-18051 Rostock, Germany ^b Institut für Organische Katalyseforschung an der Universität Rostock, Buchbinderstraße 5–6, D-18055 Rostock, Germany

Eingegangen am 24 Juni 1999; akzeptiert am 8 Augustus 1999

Abstract

The trimethylsiloxychlorosilanes (Me₃SiO)Me_{2-n}Ph_nSiCl (1: n = 0; 2: n = 1; 3: n = 2) were allowed to react with lithium metal in tetrahydrofuran (THF) and in a mixture of THF-diethylether-n-pentane in volume ratio 4:1:1 (Trapp mixture). The reaction of 1 with lithium metal in THF under refluxing leads to the homo-coupling product [(Me₃SiO)Me₂Si]₂ (4). A mixture of 1 and Me₃SiCl in molar ratio 1:2 reacts with lithium metal in THF to give 4 and the cross-coupling product (Me₃SiO)Me₂SiSiMe₃ (7). The silulithium derivatives $Me_3SiO(SiMePh)_nLi$ (8: n = 1; 9: n = 2; 10: n = 3) and $Me_3SiSiMePhLi$ (11) are formed in the reaction of 2 with lithium metal in THF at -78° C and in the Trapp mixture at -110° C. Main product in both cases is 9. 8–11 are trapped by Me₃SiCl and HMe₅SiCl. The trapping products (Me₃SiO)SiMePhSiMe₃ (13a), Me₃SiO(SiMePh)₅SiMe₂R (14a, 14b; a: R = Me, b: R = H), $Me_3SiO(SiMePh)_3SiMe_2R$ (15a, 15b) and $Me_3SiSiMePhSiMe_2R$ (16a, 16b) are obtained. The reaction of 3 with lithium metal like 2 produces the silvllithium derivatives $Me_3SiO(SiPh_2)_nLi$ (18: n = 1, 19: n = 2) and $Me_3SiSiPh_2Li$ (20), wich are trapped by Me₃SiCl and HMe₂SiCl to give the corresponding disilanes (Me₃SiO)SiPh₂SiMe₃R (23a, 23b) and trisilanes Me₃SiO(SiPh₂)₂SiMe₂R (24a, 24b) as well as Me₃SiSiPh₂SiMe₂R (25a, 25b). In addition to 18, 19 and 20 LiSiPh₂SiPh₂Li (21) is formed in a small amount in the reaction of 3 with lithium metal at -78° C to afford tetrasilanes [RMe₂SiPh₂Si]₂ (26a, 26b) after trapping by Me₃SiCl and HMe₂SiCl. The disilane (Me₃SiO)SiMeR'SiMe₃ (17) (R' = 3,4,5,6-tetrakis(trimethylsilyl)cyclohex-1-enyl) is produced by reaction of a mixture of 2 and Me₃SiCl in molar ratio 1:6 with 6 equivalents of lithium at -78° C in THF. The reaction of a mixture of 3 and Me₃SiCl in the molar ratio 1:10 with 11 equivalents of lithium under the same conditions gives (Me₃SiO)SiR₂SiMe₃ (27).

Zusammenfassung

Die Trimethylsiloxychlorsilane (Me₃SiO)Me_{2-n}Ph_nSiCl (1: n = 0; 2: n = 1; 3: n = 2) wurden mit Lithium in THF und in einem Gemisch von THF-Diethylether-*n*-Pentan im Volumenverhältnis 4:1:1 (Trapp-Mischung) umgesetzt. 1 reagiert mit Lithium in siedendem THF zum Homokupplungsprodukt [(Me₃SiO)Me₂Si]₂ (4). Die Umsetzung eines Gemisches von 1 und Me₃SiCl im Molverhältnis 1:2 mit Lithium in THF ergibt 4 und das Kreuzkupplungsprodukt (Me₃SiO)Me₂SiSiMe₃ (7). Bei der Reaktion von 2 mit Lithium in THF bei -78° C und in der Trapp-Mischung bei -110° C werden die Lithiumderivate Me₃SiO(SiMePh)_nLi (8: n = 1; 9: n = 2; 10: n = 3) und Me₃SiSiMePhLi (11) gebildet, wobei 9 immer das Hauptprodukt ist. 8-11 werden mit Me₃SiCl und HMe₂SiCl als entsprechende Silylierungsprodukte (Me₃SiO)SiMePhSiMe₃ (13a), Me₃SiO(SiMePh)₂SiMe₂R (14a, 14b, a: R = Me, b: R = H), Me₃SiO(SiMePh)₃SiMe₂R (15a, 15b) und Me₃SiSiMePhSiMe₂R (16a, 16b) abgefangen. Die Umsetzung von 3 mit Lithium analog der von 2 führt zu den Lithiumderivaten Me₃SiO(SiPh₂)_nLi (18: n = 1; 19: n = 2) und Me₃SiSiPh₂Li (20). Nach Abfangen mit Me₃SiCl und HMe₂SiCl und HMe₂SiCl und HMe₂SiCl werden die entsprechenden Disilane (Me₃SiO)SiPh₂SiMe₂R (23a, 23b) sowie die Trisilane

^{*} Corresponding author.

 $Me_3SiO(SiPh_2)_2SiMe_2R$ (24a, 24b) und $Me_3SiSiPh_2SiMe_2R$ (25a, 25b) erhalten. Neben 18, 19 und 20 entsteht bei der Umsetzung von 3 mit Lithium in geringer Menge LiSiPh_2SiPh_2Li (21), abgefangen als Tetrasilane [RMe_2SiPh_2Si]_2 (26a, 26b). Die Reaktion eines Gemisches von 2 und Me_3SiCl im Molverhältnis 1:6 mit vier Äquivalenten Lithium in THF bei – 78°C ergibt das Disilan (Me_3SiO)SiMeR'SiMe_3 (17) (R' = 3,4,5,6-Tetrakis(trimethylsilyl)cyclohex-1-enyl). Durch Reaktion eines Gemisches von 3 mit Me_3SiCl im Molverhältnis 1:10 mit 11 Äquivalenten Lithium unter gleichen Bedingungen wird (Me_3SiO)SiR'_2SiMe_3 (27) erhalten. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Trimethylsiloxysilyllithiums; Trimethylsiloxydi- and trisilanes; Self-condensation; Silylenoids

1. Einleitung

Organolithiumverbindungen, die an einem Kohlenstoffatom ein Lithiumatom und als Abgangsgruppe ein Halogenatom oder eine RO-Gruppe tragen — Lithiumcarbenoide — sind eine häufig untersuchte und gut charakterisierte Verbindungsklasse [1–13]. Sie reagieren in Abhängigkeit von den gewählten Bedingungen, insbesondere von der Temperatur, als Nucleophil oder Elektrophil, wobei die elektrophile Reaktivität als 'carbenoid-typisch' angesehen wird.

Im Gegensatz zu Lithiumcarbenoiden und Organolithiumverbindungen mit einem Stickstoffatom in α-Stellung (N-C-Li) [3,5,14-18] liegen über analoge Siliciumverbindungen erheblich weniger Untersuchungen vor (Übersicht in [19,20]). Bekannte stabile siliciumfunktionalisierte Silyllithiumverbindungen mit einem α -Heteroatom sind (Et₂N)_nPh_{3-n}SiLi (n = 1, 2) [21,22], (Et₂N)MePhSiLi [21], (CH₂=CHCH₂X)Ph₂SiLi (X = O, NH) [23], $[(Me_3Si)_2N]Me_{2-n}Ph_nSiLi (n=1, 2)$ [24], (Me₃CO)₂PhSiLi [22,25] und (RO)Ph₂SiLi (R = Me₃C, Me₂CH, Me) [22,26]. Elektrophile und nucleophile Reaktivität, Silylenoidcharakter, wurde nur für die Verbindungen (RO)Ph₂SiLi und [(Me₃Si)₂N]MePhSiLi nachgewiesen. Deutlicher Ausdruck des ambiphilen Verhaltens ist die Dimerisierung (Selbstkondensation) dieser Verbindungen zu den entsprechenden Disilanyllithiumverbindungen (Gl. (1)), bei der ein Molekül als Nucleophil und ein anderes als Elektrophil reagiert.

(X)RPhSiLi + (X)RPhSiLi

$$\longrightarrow (X)RPhSi - SiPhRLi + LiX$$
(1)

$$X = MeO$$
, Me_3CO , $R = Ph$; $X = (Me_3Si)_2N$, $R = Me$.

Theoretische Untersuchungen zum Mechanismus der Selbstkondensation am (MeO)H₂SiLi zeigen, daß im zwei Moleküle (MeO)H₂SiLi enthaltenden Übergangszustand der Reaktion ein nucleophiles und ein elektrophiles Siliciumzentrum vorliegen [27]. Halogensilyllithiumverbindungen (X)R₂SiLi (X = F, Cl) wurden bisher nur diskutiert als reaktive Intermediate mit Silylenoidcharakter bei der Erklärung der Ergebnisse der reduktiven Dehalogenierung von Dihalogensilanen R₂SiX₂ mit Lithium [28–30].

Uns interessierte, (1) ob sich trimethylsiloxysubstituierte Silyllithiumverbindungen (Me_3SiO)SiLi, die ebenfalls als siliciumfunktionalisierte Silyllithiumverbindungen betrachtet werden können, darstellen lassen und (2) inwieweit sie silylenoides Verhalten zeigen. Da der Me₃SiO-Substituent im Vergleich zu Alkoxysubstituenten die bessere Abgangsgruppe ist, erwarteten wir, daß der Silylenoidcharakter in Siloxysilyllithiumstärker als in Alkoxysilyllithiumverbindungen ausgeprägt ist. Von den verschiedenen Methoden zur Synthese von Silyllithiumverbindungen [19,20,31] sollte das einfachste Verfahren, Umsetzung von Chlorsilanen mit Lithium, eingesetzt werden.

Nachfolgend stellen wir die Ergebnisse unserer Untersuchungen zur Darstellung von trimethylsiloxysubstituierten Silyllithiumverbindungen durch Reaktion der Trimethylsiloxychlorsilane (Me₃SiO)Me_{2-n}Ph_nSiCl (1: n=0; 2: n=1; 3: n=2) mit Lithiumspänen und zum Reaktionsverhalten von Trimethylsiloxysilyllithiumverbindungen vor.

2. Ergebnisse und Diskussion

2.1. Umsetzung von $(Me_3SiO)Me_2SiCl$ (1) mit Lithium

Bei Raumtemperatur reagiert Trimethylsiloxychlorsilan 1 mit überschüssigem Lithium (4 Äquivalente = 4 Äq) in Tetrahydrofuran (THF) äußerst langsam. Beim Erhitzen des Gemisches am Rückfluß erfolgt eine deutliche Beschleunigung der Reaktion, und es entstehen das 1,2-Bis(trimethylsiloxy)-1,2-tetramethyl-disilan (4) (Hauptprodukt) sowie die Siloxane 5 und 6 (Gl. (2)).

$$(Me_{3}SiO)Me_{2}SiCl \xrightarrow{+ Li (4 Aq), 1HF}_{1. 14 h Rückfluß} (Me_{3}SiO)Me_{2}Si - 1 2. + Me_{3}SiCl - LiCl SiMe_{2}(OSiMe_{3}) 4 (62\%)$$

+
$$(Me_3SiO)_2SiMe_2 + Me_3SiO(SiMe_2O)SiMe_3$$
 (2)
5 (11%) 6 (3%)

Sowohl die bei Raum- als auch die bei Rückflußtemperatur durchgeführte Umsetzung ergab keinerlei Hinweise auf die Bildung von Dimethyl-(trimethylsiloxy)silyllithium. In Proben, die vor vollständigem Umsatz von 1 aus der Reaktionslösung entnommen und mit Chlotrimethylsilan versetzt wurden, ließ sich als einziges Disilan nur 4 nachweisen.

Die Reaktion eines Gemisches von 1 und Chlortrimethylsilan im Molverhältnis 1:2 mit Lithium ergibt 1-Trimethylsiloxy-pentamethyl-disilan (7), das Kreuzkupplungsprodukt von 1 und Me₃SiCl, sowie 4, 5 und 6 (Gl. (3)).

$$(Me_{3}SiO)Me_{2}SiCl + 2Me_{3}SiCl + \frac{11}{96} + \frac{14}{20^{\circ}C_{2}, -LiCl}$$

$$(Me_{3}SiO)Me_{2}Si-SiMe_{3} + \frac{4}{(31^{\circ})} + \frac{5}{(6^{\circ})} + \frac{6}{(2^{\circ})}$$
(3)

Daß trotz des Überschusses an Chlortrimethylsilan bei der Umsetzung das Disilan 4 in relativ großer Menge entsteht, deutet auf eine Begünstigung der Homo- gegenüber der Kreuzkupplung hin. Mögliche Ursachen für die Bildung der Siloxane 5 und 6 könnten ins Reaktionssystem gelangte Feuchtigkeitsspuren und/ oder bei der Präparation der Lithiumspäne in geringer Menge entstandenes Lithiumoxid bzw. -hydroxid sein.

2.2. Umsetzung von (Me₃SiO)MePhSiCl (2) mit Lithium

Das Bis(trimethylsilyl)amino-methyl-phenyl-chlorsilan reagiert mit Lithiumspänen bei -78 °C zu dem bei dieser Temperatur beständigen Bis(trimethylsilyl)aminosilyllithium [(Me₃Si)₂N]MePhSiLi [24]. Aufgrund dieses Ergebnisses und der Erwartung, daß das analoge Trimethylsiloxysilyllithium (Me₃SiO)MePhSiLi instabiler sein sollte als das Bis(trimethylsilyl)aminosilyllithium, entschieden wir uns unter der Maßgabe, ein stabiles Trimethylsiloxysilyllithium zu gewinnen, das Trimethylsiloxychlorsilan **2** mit Lithium in THF bei -78°C und in einer Trapp-Mischung [1] (THF-Et₂On-Pentan im Volumenverhältnis 4:1:1) bei -110°C umzusetzen.

Das Trimethylsiloxychlorsilan 2 und Lithium reagieren sowohl bei -78 (Variante A) als auch bei -110° C (Variante B) gut miteinander, wie aus den im Schema 1 angegebenen Reaktionszeiten bis zum vollständigen Verbrauch von 2 hervorgeht (Verfolgung der Reaktion mittels GC über die Abnahme von 2). Nach Umsetzen der jeweils entstandenen dunkelbraunen Reaktionslösungen mit Chlortrimethylsilan oder Chlordimethylsilan werden als Abfangprodukte von Lithiumsilaniden das Trimethylsiloxydisilan 13a, die Trimethylsiloxytrisilane 14, Trimethylsiloxytetrasilane 15 und die Trisilane 16 erhalten (Schema 1). In Abhängigkeit vom Abfangreagenz entsteht weiterhin Me₃SiOSiMe₃ oder Me₃SiOSiMe₂H. Bereits während der Reaktion von 2 mit Lithium wird das Siloxan (Me₃SiO)₂SiMePh (12) gebildet.

Die Abfangprodukte 13a und 14–16 zeigen, daß im Verlaufe der Umsetzung von 2 mit Lithium nicht nur das erhoffte Trimethylsiloxysilyllithium 8, sondern auch Trimethylsiloxydisilanyllithium 9, Trimethylsiloxytrisilanyllithium 10 und Trimethylsilylsilyllithium 11 gebildet werden (Schema 1).

Die Ausbeute der einzelnen Abfangprodukte macht deutlich, daß das Trimethylsiloxydisilanyllithium 9 mit

weitem Abstand das Hauptprodukt unter den Lithiumsilaniden ist. Das erwartete Trimethylsiloxysilyllithium **8** liegt gemäß Ausbeute von **13a** nur in der bei -110° C erhaltenen Reaktionslösung in nennenswerter Menge vor. Diese Ergebnisse sprechen dafür, daß sich das zunächst bei der Reaktion von **2** mit Lithium bildende **8** sowohl bei -78 als auch bei -110° C sehr instabil ist und hauptsächlich in einer Selbstkondensation analog Gl. (1) abreagiert, in der die Trimethylsiloxygruppe eines Moleküls nucleophil durch die Trimethylsiloxysilylgruppe Me₃SiOMePhSi ersetzt wird (Gl. (4)). Dieser Reaktionsablauf weist auf eine ambiphile Reaktivität, silylenoides Verhalten, des Trimethylsiloxysilyllithiums **8** hin.

$$28 \rightarrow (Me_3SiO)MePhSi - SiMePhLi + LiOSiMe_3 \qquad (4)$$
9

Aus der Bildung einer kleinen Menge von 10, angezeigt durch das Abfangprodukt 15, folgt, daß im Vergleich zur Selbstkondensation in erheblich geringerem Umfange eine Reaktion von 8 mit 9 unter Abspaltung von LiOSiMe₃ stattfindet (Gl. (5)).

$$8 + 9 \rightarrow (Me_3SiO)MePhSi - SiMePh - SiMePhLi + LiOSiMe_3 10 (5)$$

Eine eindeutige Aussage dazu, welcher der Reaktionspartner als Nucleophil und welcher als Elektrophil fungiert, kann nicht getroffen werden.

Schema 1.

Schema	2
Junuina	<i></i> .

Das entsprechend Gl. (4) und (5) entstandene Lithiumtrimethylsilanolat setzt sich bei den tiefen Reaktionstemperaturen partiell zum Siloxan 12 um (Schema 1), dessen Bildung, wie oben erwähnt, schon während der Umsetzung von 2 mit Lithium beobachtet wurde. Der größere Teil verbleibt im Reaktionsgemisch und führt in Abhängigkeit vom Abfangreagenz zum Hexamethyloder Pentamethyldisiloxan.

Der Bildungsweg für das Trimethylsilylsilyllithium 11, dessen Entstehen besonders durch das Abfangsprodukt 16b belegt wird, ist nicht geklärt.

Die Verfolgung der Umsetzung von 2 mit Lithium in THF bei -80° C mittels ²⁹Si-NMR-Spektroskopie (IN-EPT-Technik) läßt nur die Abnahme von 2 sowie die Bildung von 12 und des Trimethylsiloxydisilanyllithiums 9 eindeutig erkennen (9 (Diastereomerengemisch): δ (²⁹Si, THF) = 3.3, 4.4 [Si(CCCO)]; -7.8, -5.8 [Si(C-COSi)]; -37.0 breites Signal [Si(CCSiLi)] ppm). Dieser Befund spricht dafür, daß das Trimethylsiloxysilyllithium 8, das für das Entstehen von 9 und 10 wesentlich ist, in der Lösung nur in geringer Konzentration vorliegt. Es reagiert offensichtlich sehr schnell mit sich selbst entsprechend Gl. (4) zu 9.

Die Selbstkondensation des Trimethylsiloxysilyllithiums 8 entsprechend Gl. (4) läßt sich erheblich und die Reaktion von 8 und 9 unter Abspaltung von LiOSiMe₃ (Gl. (5)) völlig zurückdrängen, wenn ein Gemisch von Trimethylsiloxychlorsilan 2 und Me₃SiCl im Molverhältnis 1:2 mit überschüssigem Lithium bei -78° C umgesetzt wird (Schema 2).

Die Ausbeute des Trimethylsiloxydisilans 13a, Abfangprodukt von 8, ist deutlich größer und die des Trimethylsiloxytrisilans 14a, Abfangprodukt von 9, erheblich kleiner als bei der analogen Reaktion von 2 mit Lithium (Schema 1). Das Trimethylsiloxytetrasilan 15a, Abfangprodukt des nach Gl. (5) gebildeten Trimethylsiloxytrisilanyllithiums 10, ließ sich im Reaktionsgemisch nicht mehr nachweisen. Die Bildung des Siloxans 12 im Verlauf der Umsetzung ist ein zusätzlicher Beleg dafür, daß trotz der Gegenwart des Abfangreagenzes Me₃SiCl noch eine Selbstkondensation des Trimethylsiloxysilyllithiums 8 erfolgt. Bemerkenswert ist, daß das Abfangprodukt des Trimethylsiloxysilyllithiums 11, das Trisilan 16a, bei der Umsetzung von 2 mit Lithium bei gleichzeitiger Anwesenheit von Chlortrimethylsilan deutlich gegenüber der Reaktion von 2 mit Lithium zunimmt. Als weiteres Produkt entsteht das tetrakis(trimethylsilyl)cyclohexenyl-substituierte Trimethylsiloxydisilan 17. In diesem Falle findet neben der Kupplung des Trimethylsiloxysilyllithiums 8 mit Chlortrimethylsilan eine reduktive Tetrasilylierung des Phenylsub-stituenten statt. Die reduktive Tetrasilylierung von Phenylgruppen wurde schon häufiger bei der Reaktion von Gemischen aus Phenylchlorsilanen und Chlortrimethylsilan mit Lithium beobachtet [24,32,33].

Die Bildung von 12, 13a, 14a und 16a läßt sich völlig unterdrücken, wenn ein Gemisch von 2 und Me₃SiCl im Molverhältnis 1:6 mit Lithium analog Schema 2 umgesetzt wird. In befriedigender Ausbeute entsteht 17 (59%).

2.3. Umsetzung von (Me₃SiO)Ph₂SiCl (3) mit Lithium

Das Trimethylsiloxychlorsilan **3** reagiert mit Lithiumspänen bei -78° C in THF (Variante A) und bei -110° C in einer Trapp-Mischung (Variante B) zu dunkelgrünen Lösungen. Während der Reaktion entsteht in geringem Umfange das Siloxan (Me₃SiO)₂-SiPh₂ (**22**).

Weiterhin werden neben dem erwartetenTrimethylsiloxysilyllithium 18, Trimethylsiloxydisilanyllithium 19 und Trimethylsilylsilyllithium 20 sowie im Falle der bei – 78°C durchgeführten Reaktion außerdem das 1,2-Dilithiumderivat LiSiPh₂SiPh₂Li (21) gebildet, wie aus den mit Chlortrimethylsilan und Chlordimethylsilan erhaltenen Abfangprodukten, den Trimethylsiloxydisilanen 23, Trimethylsiloxytrisilanen 24, Trisilanen 25 und den Tetrasilanen 26, hervorgeht (Schema 3). Die zu 18, 19, 20 und 22 analogen Verbindungen entstanden auch im Verlaufe der Reaktion von 2 mit Lithium (analoge Paare: 8–18, 9–19, 11–20, 12–22), ein Befund, der zeigt, daß sich das Reaktionsgeschehen bei der Umsetzung der Trimethylsiloxychlorsilane 2 und 3 mit Lithium stark ähnelt.

Die Bildung von 19 sowohl bei -78 als auch bei -110° C belegt, daß das Trimethylsiloxysilyllithium 18 bei beiden Temperaturen partiell einer Selbstkondensation entsprechend Gl. (2) unterliegt. Diese Reaktion deutet auf silylenoide Eigenschaften von 18 hin. Der Silylenoidcharakter von 18 ist entsprechend unseren Erwartungen (s. Section 1) stärker ausgeprägt als in den analogen Alkoxysilyllithiumverbindungen (RO)Ph₂SiLi (R = Me₃C, Me) [22,26], die bei -78° C noch keine Selbstkondensation eingehen. Aus den Ausbeuten der

Abfangprodukte für 8 und 9 (Schema 2) einerseits sowie für 18 und 19 (Schema 3) andererseits folgt, daß 18 weniger zur Selbstkondensation neigt als 8. Die höhere Stabilität von 18 gegenüber der von 8 ist auf den zweiten Phenylsubstituenten zurückzuführen. Weiterhin läßt sich den Ausbeuten entnehmen, daß beide Trimethylsiloxysilyllithiumverbindungen bei -110 erheblich stabiler sind als bei -78° C.

Das Trimethylsiloxydisilanyllithium **19** reagiert bei -78° C in geringem Ausmaße mit Lithium unter Si - O-Bindungsspaltung zum 1,2-Dilithiumderivat **21** (Gl. (6)), das mit Me₃SiCl als **26a** bzw. HMe₂SiCl als **26b** abgefangen wird (Schema 3).

$$Me_{3}SiO(SiPh_{2})_{2}Li + 2Li \xrightarrow{\text{THF}}_{-78^{\circ}C} LiSiPh_{2} \overline{21}SiPh_{2}Li + LiOSiMe_{3}$$
(6)

Für die Disiloxane $(Ph_3Si)_2O$, $[(4-CH_3C_6H_4)_3Si]_2O$ und $Ph_3SiOSiMe_3$ wurde eine Si – O-Bindungsspaltung durch Lithium in THF bei Raumtemperatur bereits beschrieben [34], wobei im unsymmetrisch substituierten Disiloxan aufgrund der im Vergleich zum Me_3SiLi höheren Stabilität des Ph_3SiLi [31] die $(Ph_3)Si - O$ -Bindung gespalten wird.

Das durch Selbstkondensation von 18 und durch Si - O-Bindungsspaltung von 19 entstandene LiOSiMe₃ reagiert zum Teil mit noch nicht umgesetzten 3 zum Siloxan 22. Der Rest wird als Me₃SiOSiMe₃ oder Me₃SiOSiMe₂H abgefangen.

Schema 3.

Erstaunlich ist, daß bei der Umsetzung eines Gemisches von 3 und Me₃SiCl im Molverhältnis 1:10 mit 11 Äquivalenten Lithium in geringem Umfange 24a, das Abfangprodukt des Trimethylsiloxydisilanyllithiums 19, erhalten wird (Schema 4). Dieses Ergebnis läßt erkennen, daß die Selbstkondensation des intermediär gebildeten Trimethylsiloxysilyllithiums 18 eine sehr begünstigte Reaktion ist. Hauptprodukt der Umsetzung ist das sterisch überladene bis[tetrakis(trimethylsilyl)cyclohexenyl]-substituierte Trimethylsiloxydisilan 27, entstanden durch Kupplung von Me₃SiOSiPh₂Li (19) mit Me₃SiCl und reduktive Tetrasilylierung der Phenylsubstituenten. Als weitere Verbindungen wurden 22 und 23a eindeutig identifiziert.

Der Bildungsweg von $Me_3SiSiPh_2Li$ (20) (Schema 3) ist wie der von $Me_3SiSiMePhLi$ (11) noch ungeklärt. Aus dem Anteil der Abfangprodukte 25 (Schema 3) und 16 (Schema 2) wird ersichtlich, daß 20 verglichen mit 11 bevorzugt entsteht.

3. Experimentelles

Massenspektren: Massenspektrometer AMD 402-3 (INTECTRA GmbH). GC/MS: Kopplung Gaschromatograph Hewlett Packard HP-5890-II/Massenspektrometer HP 59827 A. Gaschromatographie: Hewlett Packard HP-5890-II, Kapillarsäule HP1 (FS, unpolar) 25 m; CHROMPACK CP 9002, Kapillarsäule WCOT (FS, unpolar) 25 m. Präparative Gaschromatographie: HP-5890-II der Fa. Gerstel, Kapillarsäulen HP5 und HP FFAP 30 m. NMR-Spektren: Bruker ARX 400 Kernresonanzspektrometer, 30–50%ige Lösungen in C₆D₆, Referenz C₆D₆, chemische Verschiebungen bezogen auf TMS. IR-Spektren: Nicolet 205 FT-IR-Spektrometer, Flüssigkeiten kapillar, Feststoffe in Nujol, jeweils zwischen KBr-Platten. Die Darstellung der Trimethylsiloxychlorsilane 1-3erfolgte unter Ausschluß von Feuchtigkeit. Alle anderen Umsetzungen wurden in trockenen, entgasten Lösungsmitteln in einer Argonatmosphäre durchgeführt. Die verwendeten Lösungsmittel wurden nach Standardmethoden getrocknet und gereinigt sowie mit Natriumdraht unter Argon aufbewahrt. Me₃SiCl und HMe₂SiCl wurden mit wenig CaH₂ behandelt, um Spuren von gelöstem HCl zu entfernen.

Der Reaktionsverlauf der Trimethylsiloxychlorsilane 1-3 bzw. der Gemische von Trimethylsiloxychlorsilan 1-3/Chlortrimethylsilan mit Lithiumspänen wurde gaschromatographisch über die Abnahme des Trimethylsiloxychlorsilans verfolgt.

Die Verbindungen 4, 6, 14a, 14b, 17, 23a, 23b, 24a, 25b und 27 konnten durch fraktionierte Destillation bzw. Umkristallisation, die Verbindungen 7, 13a, 16a, 16b und 25a durch präparative GC rein erhalten werden. Sie wurden mittels ihrer Elementaranalysen (außer 7, 13a, 16a, 16b, 25a), Massen-, NMR- und teilweise IR-Spektren identifiziert und charakterisiert. Die Identifizierung der einzelnen Komponenten in Gemischen erfolgte durch gaschromatographische, spektroskopische und GC/MS-Untersuchungen sowie im Falle der Siloxane 5, 6, 12, 22 durch Datenvergleich mit authentischen Proben. Bekannte Verbindungen sind neben diesen Siloxanen 4 [35], 7 [36], 13a [37,38], 16a [39,40], 25a [41,42] und 26a [22,42].

Die in den Gl. (2) und (3) sowie in den Schemata 1–4 angegebenen Ausbeuten basieren auf gaschromatographischen Untersuchungen aller bei der Aufarbeitung der Reaktionsansätze erhaltenen Fraktionen (reine und/oder Mischfraktionen). Die Ausbeute der durch Destillation bzw. Umkristallisation isolierten Verbindungen ist in den jeweiligen Arbeitsvorschriften zusammen mit den analytischen Daten angegeben. Sie ist aufgrund von Verlusten bei der Aufarbeitung der Reaktionsgemische sehr ähnlicher Verbindungen deutlich geringer.

3.1. Darstellung der Siloxychlorsilane (Me₃SiO)Me₂Si-Cl (1), (Me₃SiO)MePhSiCl (2) und (Me₃SiO)Ph₂SiCl (3)

Die Trimethylsiloxychlorsilane **1** [43,44], **2** [45,46] und **3** [46] wurden analog der Darstellung von **1** in [44] durch Reaktion der Chlorsilane Me₂SiCl₂, MePhSiCl₂ bzw. Ph₂SiCl₂ mit NaOSiMe₃ im Molverhältnis 1.1:1 in *n*-Pentan–Et₂O (Volumenverhältnis 3:2) bei -78° C in Ausbeuten von ~ 50% synthetisiert. Von den Verbindungen, die durch ihre Elementaranalysen, IR-Spektren, ¹H-, ¹³C- und ²⁹Si-NMR-Spektren charakterisiert wurden, sind die noch nicht beschriebenen analytischen Daten angegeben.

1: ¹³C-NMR: $\delta = 1.7$ (Me₃Si), 4.2 (SiMe₂) ppm.

2: ¹H-NMR: $\delta = 0.10$ (s, Me₃Si, 9H), 0.51 (s, MeSi, 3H), 7.18–7.55 (m, PhSi, 5H) ppm. ¹³C-NMR: $\delta = 1.7$ (Me₃Si); 3.2 (MeSi); PhSi 133.4 (C-1), 130.7 (C-2), 128.5 (C-3), 128.2 (C-4) ppm. IR: ν (SiOSi) 1071, δ (CH₃Si) 1251, 1264; δ (PhSi) 1430 cm⁻¹.

3: ¹H-NMR: $\delta = 0.12$ (s, Me₃Si, 9H), 7.13–7.69 (m, PhSi, 10H) ppm. ¹³C-NMR: $\delta = 1.9$ (Me₃Si); PhSi 134.4 (C-1), 134.3 (C-2), 131.1 (C-3), 128.3 (C-4) ppm. ²⁹Si-NMR: $\delta = -21.8$ [Si(CCOCl)], 14.1 [Si(CCCO)] ppm. IR: ν (SiOSi) 1075, δ (CH₃Si) 1253, δ (PhSi) 1430 cm⁻¹. Anal. gef. C, 58.89; H, 6.29. C₁₅H₁₉OClSi₂ (306.94) ber.: C, 58.70; H, 6.24%.

3.2. Reaktion von 1 mit Lithium, Darstellung von 1,2-Bis(trimethylsiloxy)-1,1,2,2-tetramethyl-disilan (4)

Zu 0.14 mol Li-Spänen in 70 ml THF werden unter kräftigem Rühren bei Raumtemperatur (~20°C) 0.035 mol 1, gelöst in 30 ml THF, getropft. Zur Vervollständigung der Reaktion wird das Gemisch 14 h am Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur wird das überschüssige Lithium abgetrennt. Die farblose Lösung wird unter Rühren mit 0.07 mol Me₃SiCl versetzt und 24 h bei Raumtemperatur gerührt. Anschließend werden THF und Me₃SiCl abdestilliert. Der ölige Rückstand wird mit 50 ml n-Pentan versetzt. Das unlösliche LiCl wird über eine mit trockenem Kieselgur belegte Fritte abfiltriert, zweimal mit wenig n-Pentan gewaschen und vom Filtrat das n-Pentan unter leicht vermindertem Druck abdestilliert. Der Rückstand wird im Vakuum über eine kleine Vigreux-Kolonne destilliert. Neben Gemischen, die aus 4, 5 und 6 bestehen, wird eine Fraktion mit reinem 4 erhalten.

4: Ausbeute: 2.3 g (23%). Sdp.: 75–78°C (10 Torr). MS (EI, 70eV): m/z (%) = 294 (1) [M]⁺, 279 (10) [M – Me]⁺, 221 (99) [M – SiMe₃]⁺, 147 (100) [Me₃Si-OSiMe₂]⁺, 73 (78) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.08$ (s, Me₃SiO, 18H), 0.24 (s, Me₂Si, 12H) ppm. ¹³C-NMR: $\delta = 2.0$ (Me₂Si), 3.2 (Me₃SiO) ppm. ²⁹Si-NMR: $\delta =$ - 0.3 [Si(CCOSi)], 7.7 [Si(CCCO)] ppm. Anal. gef. C, 40.56; H, 10.26. C₁₀H₃₀O₃Si₄ (294.693) ber.: C, 40.76; H, 10.26%.

3.3. Reaktion eines Gemisches von 1 und Chlortrimethylsilan im Molverhältnis 1:2 mit Lithium, Bildung von 4 und 1-Trimethylsiloxy-pentamethyl-disilan (7)

Zu 0.14 mol Li-Spänen in 70 ml THF wird unter kräftigem Rühren bei Raumtemperatur ein Gemisch von 0.035 mol 1 und 0.07 mol Me₃SiCl, gelöst in 30 ml THF, getropft. Nach einer Reaktionszeit von 96 h bei Raumtemperatur wird analog Section 3.2 aufgearbeitet. Destillation des Rückstandes über eine kleine Vigreux-Kolonne bei einem Druck von 17 Torr ergibt im Temperaturbereich von $61-90^{\circ}$ C vier Fraktionen die 4, 5, 6 und 7 in unterschiedlichen Anteilen enthalten. Der maximale Gehalt an 7 beträgt in einer Fraktion $(63-70^{\circ}C)$ 46%. Aus dieser Fraktion läßt sich 7 durch präparative GC rein isolieren.

7: $C_8H_{24}OSi_3$ (220.54). MS (EI, 70eV): m/z (%) = 220 (6) [M]⁺, 205 (16) [M – Me]⁺, 147 (100) [M – SiMe_3]⁺, 117 (7) [Me_3SiOSi]⁺, 73 (27) [SiMe_3]⁺. ¹H-NMR: δ = 0.04 (s, Me_3Si, 9H), 0.11 (s, Me_3SiO, 9H), 0.19 (s, Me_2Si, 6H) ppm. ¹³C-NMR: δ = – 2.3 (Me_3Si), 1.5 (Me_2Si), 2.4 (Me_3SiO) ppm. ²⁹Si-NMR: δ = – 23.3 [Si(CCCSi)], 4.3 [Si(CCOSi)], 7.2 [Si(CCCO)] ppm.

3.4. Umsetzung der Trimethylsiloxychlorsilane 2 und 3 mit Lithium in THF bei – 78°C oder in einer Trapp-Mischung bei – 110°C sowie Abfangen gebildeter Lithiumsilanide mit Chlortrimethyl- und Chlordimethylsilan

Aufgrund der Analogien bei der experimentellen Durchführung wird für die Umsetzungen der Trimethylsiloxychlorsilane 2 und 3 mit Lithium und die Abfangreaktionen eine allgemeine Arbeitsvorschrift angegeben. Die Aufarbeitung der Rohprodukte ist gesondert beschrieben. Einige Details der Reaktionen sind in den Schemata 1 und 3 aufgeführt.

3.4.1. Allgemeine Arbeitsvorschrift

Ein Gemisch von 0.14 mol Lithiumspänen und 70 ml THF oder 70 ml einer Trapp-Mischung (THF-Et₂O*n*-Pentan im Volumenverhältnis 4:1:1) wird auf -78° C (Umsetzungen in THF) bzw. -110° C (Umsetzungen in der Trapp-Mischung) abgekühlt. Zu dem jeweiligen Gemisch werden unter kräftigem Rühren im Verlaufe von 15 min 0.035 mol Trimethylsiloxychlorsilan 2 oder 3, gelöst in 30 ml THF oder Trapp-Mischung, getropft. Anschließend wird das Gemisch bei -78 oder -110°C bis zum vollständigem Umsatz des Siloxychlorsilans gerührt (Reaktionszeiten für 2 in Schema 1, für 3 in Schema 3). Die Lösungen färbten sich dunkelbraun (Umsetzung von 2) bzw. dunkelgrün (Umsetzung von 3). Nach Verbrauch des Siloxychlorsilans wird das überschüssige Lithium abgetrennt. Die Lithiumsilanidlösungen werden bei der jeweiligen Reaktionstemperatur unter Rühren mit 0.07 mol Abfangreagenz Me₃SiCl oder HMe₂SiCl versetzt und im Verlaufe von 30 min auf Raumtemperatur ($\sim 20^{\circ}$ C) erwärmt. Danach werden die Reaktionsgemische 24 h bei Raumtemperatur reagieren gelassen. Anschließend wird das THF bzw. das Lösungsmittelgemisch und das überschüssige Abfangreagenz im Vakuum bei 20°C abdestilliert und der Rückstand mit 50 ml n-Pentan versetzt. Das unlösliche LiCl wird über eine mit trockenem Kieselgur belegte Fritte abfiltriert und zweimal mit wenig n-Pentan gewaschen. Vom Filtrat wird das n-Pentan unter leicht vermindertem Druck abgezogen. Der jeweilige Rückstand wird im Ölpumpenvakuum destilliert.

Die abdestillierten Lösungsmittel enthalten in Abhängigkeit vom eingesetzten Abfangreagenz $(Me_3Si)_2O$ oder HMe_2SiOSiMe_3.

Für die ²⁹Si-NMR-spektroskopische Verfolgung der Umsetzung von **2** mit Lithium bei -80° C in THF (Locksubstanz C₆D₆) entsprachen Stöchiometrieverhältnis Li/**2** und Konzentration von **2** in THF den obigen Werten.

3.4.2. Abfangprodukte der Lithiumsilanide aus der Umsetzung von 2 mit Lithium

THF, -78°C, Abfangreagenz Me₃SiCl.

Destillation des Rückstandes über eine kleine Vigreux-Kolonne (60–140°C/0.2 Torr) ergibt eine Fraktion aus reinem **14a** (130–132°C) und drei Fraktionen im Siedebereich von 60–125°C, die aus Gemischen von **12**, **14a** sowie sehr wenig **13a** und **16a** bestehen. Im Destillationsrückstand befinden sich neben unbekannten Produkten **14a** und **15a**, wobei letzteres auf $\sim 30\%$ angereichert wurde.

Trapp-Mischung, -110° C, Abfangreagenz Me₃Si-Cl.

Das Ergebnis der fraktionierten Destillation entspricht dem obigen. Jedoch ist der Anteil von **13a** in den Mischfraktionen deutlich größer. Aus der Fraktion mit dem höchsten Gehalt an **13a** wird diese Verbindung durch präparative GC rein erhalten.

THF, -78°C, Abfangreagenz HMe₂SiCl.

Destillation des Rückstandes über eine Spaltrohrkolonne (Mikro-Spaltrohr-System D100, Fischer) im Temperaturbereich von $60-140^{\circ}$ C bei einem Druck von 0.3 Torr führt zu drei Fraktionen, die aus 12 und 16b ($60-95^{\circ}$ C), 12, 16b und 14b ($95-130^{\circ}$ C) und reinem 14b ($135-136^{\circ}$ C) bestehen. Der Destillationsrückstand enthält unbekannte Produkte, 14b sowie angereichert 15b ($\sim 35\%$). Aus der zweiten Fraktion wird 16b durch präparative GC rein gewonnen.

1-Trimethylsiloxy - 2 - phenyl - 2,3,3,3 - tetramethyl disilan (13a) [37,38]: $C_{13}H_{26}OSi_3$ (282.61). MS (EI, 70eV): m/z (%) = 282 (5) [M]⁺, 267 (6) [M – Me]⁺, 209 (100) [M – SiMe_3]⁺, 193 (36) [M – OSiMe_3]⁺, 135 (25), 73 (51) [SiMe_3]⁺. ¹H-NMR: $\delta = 0.12$ (s, Me_3Si, 9H), 0.14 (s, Me_3SiO, 9H), 0.47 (s, MeSi, 3H), 7.20– 7.57 (m, PhSi, 5H) ppm. ¹³C-NMR: $\delta = -2.2$ (Me_3Si), 0.8 (MeSi), 2.2 (Me_3SiO); PhSi 133.2 (C-1), 129.3 (C-2), 128.3 (C-3), 127.8 (C-4) ppm. ²⁹Si-NMR: $\delta = -22.7$ [Si(CCCSi)], -4.1 [Si(CCOSi)], 8.6 [Si(C-CCO)] ppm.

1-Trimethylsiloxy-1,2-dimethyl-1,2-diphenyl-3,3,3trimethyl-trisilan (**14a**): Ausbeute: 2.9 g (21%). Sdp.: 130–132°C (0.2 Torr). GC: Diastereomerengemisch ca. 1.3:1. MS (EI, 70eV): m/z (%) = 402 (4) [M]⁺, 387 (3) [M – Me]⁺, 209 (100) [Me₃SiOSiMePh]⁺, 193 (61) [Me₃SiSiMePh]⁺, 178 (46), 73 (27) [SiMe₃]⁺. ¹H-NMR: δ = 0.08, 0.09 (s, Me₃Si, 9H), 0.10, 0.11 (s, Me₃SiO, 9H), 0.43, 0.44 (s, MeSiSi, 3H), 0.52, 0.56 (s, MeSiO, 3H), 7.12–7.52 (m, PhSi, 10H) ppm. ¹³C-NMR: δ = -9.0, -8.8 (MeSi), -1.4, -1.4 (Me₃Si), 1.4, 1.5 (MeSiO), 2.0, 2.0 (Me₃SiO); PhSi 134.6, 134.7 (C-1), 132.9, 133.0 (C-2), 128.9, 129.0 (C-3), 128.0, 128.0 (C-4); PhSi 140.4, 140.6 (C-1), 136.4, 136.5 (C-2), 134.6, 134.7 (C-3), 132.9, 133.0 (C-4) ppm. ²⁹Si-NMR: δ = -49.3, -49.0 [Si(CCSiSi)]; -16.3, -16.2 [Si(CCCSi)]; -2.9, -2.5 [Si(CCOSi)]; 9.2, 9.4 [Si(CCCO)] ppm. IR: ν(SiOSi) 1049; δ(CH₃Si) 1243, 1253, 1260; δ(PhSi) 1407, 1428 cm⁻¹. Anal. gef. C, 59.45; H, 8.39. C₂₀H₃₄OSi₄ (402.837) ber.: C, 59.62; H, 8.51%.

1 - Trimethylsiloxy - 1,2,3 - trimethyl - 1,2,3 - triphenyl-4,4,4-trimethyl-tetrasilan (**15a**): Me₃SiOSiMePhSi*Me-PhSiMePhSiMe₃: C₂₇H₄₂OSi₅ (523.07). GC: Diastereomerengemisch ca. 1:1.3. MS (EI, 70eV): m/z (%) = 522 (1) [M]⁺, 507 (2) [M – Me]⁺, 449 (17) [M – SiMe₃]⁺, 209 (42) [Me₃SiOSiMePh]⁺, 193 (48) [Me₃SiSiMePh]⁺, 135 (100) [SiPhMe₂]⁺, 73 (43) [Me₃Si]⁺. ¹H-NMR: $\delta = 0.09-0.15$ [breites Signal für (Me₃Si, 9H), (Me₃SiO, 9H) und (MePhSiO, 3H)], 0.65– 0.67 (br, MePhSi*, 3H), 1.02–1.04 (br, MePhSi, 3H), 6.8–7.5 (m, PhSi, 15H) ppm. ²⁹Si-NMR: $\delta = -47.6$, -47.4, -47.2, -47.1 [Si(CCSi*Si)]; -44.2, -44.1, -43.9, -43.6 [Si*(CCSiSi)]; -14.9, -14.8, -14.7, -14.6 [Si(CCCSi)]; -3.1, -2.9, -2.7, -2.6 [Si(C-COSi)]; 9.2, 9.3, 9.4, 9.5 [Si(CCCO)] ppm.

1-Trimethylsiloxy-1,2-dimethyl-1,2-diphenyl-3-hydrido-3,3-dimethyl-trisilan (14b): Ausbeute: 4.4 g (65%). Sdp.: 135-136°C (0.3 Torr). GC: Diastereomerengemisch ca. 1.3:1. MS (EI, 70eV): m/z (%) = 388 (4) $[M]^+$, 373 (5) $[M - Me]^+$, 329 (5) $[M - SiMe_2H]^+$, 209 (100) $[Me_3SiOSiMePh]^+$, 178 (71) $[Me_2SiSiMePh]^+$, 135 (41), 73 (18) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.08$, 0.10 (s, Me₃SiO, 9H), 0.13, 0.15 (d, HMe₂Si, 6H), 0.45, 0.46 (s, MeSiSi, 3H), 0.54, 0.58 (s, MeSiO, 3H), 4.14 (septet, HSi, 1H), 7.10–7.57 (m, PhSi, 10H) ppm. ¹³C-NMR: $\delta = -8.4, -8.2$ (MeSi), -5.6, -5.5 (Me₂HSi), 1.77, 1.81 (MeSiO), 2.33, 2.37 (Me₃SiO); PhSi 135.2, 135.2 (C-1), 133.4, 133.3 (C-2), 129.5, 129.4 (C-3), 128.1, 128.1 (C-4) ppm. ²⁹Si-NMR: $\delta = -48.9$, -48.7[Si(CCSiSi)]; -37.2, -37.1 [Si(CCHSi)]; -3.4, -3.1 $[Si(CCOSi)]; 9.3, 9.4 [Si(CCCO)] ppm; J(^{29}Si-^{1}H) =$ 177.4 Hz. IR: v(SiOSi) 1054; $\delta(CH_3Si)$ 1245, 1253, 1260; δ (PhSi) 1410, 1428; ν (SiH) 2090 cm⁻¹. Anal. gef. C, 58.77; H, 8.25. C₁₉H₃₂OSi₄ (388.803) ber.: C, 58.69; H, 8.29%.

1-Trimethylsiloxy-1,2,3-trimethyl-1,2,3-triphenyl-4hydrido-4,4-dimethyl-tetrasilan (**15b**): Me₃SiOSiMePh-Si*MePhSiMePhSiMe₂H: C₂₆H₄₀OSi₅ (509.029). GC: Diastereomerengemisch ca. 1:1.5. MS (EI, 70eV): m/z(%) = 508 (3) [M]⁺, 493 (4) [M – Me]⁺, 449 (22) [M – SiMe₂H]⁺, 299 (8) [SiMePhSiMePhSiMe₂H]⁺, 222 (49) [SiMeSiMePhSiMe₂H]⁺, 209 (86) [Me₃SiOSiMePh]⁺, 135 (100), 73 (26) [Me₃Si]⁺. ¹H-NMR: δ = 0.14, 0.16 (d, Me₂HSi, 6H), 0.18, 0.19 (s, Me₃SiO, 9H), 0.42–0.56 (MeSi, 9H), 4.11 (septet, HSi, 1H), 7.06–7.65 (m, PhSi, 15H) ppm. ²⁹Si-NMR: $\delta = -47.2$ [Si(CCSi*Si)]; -43.5 [Si*(CCSiSi)]; -36.5, -36.4 [Si(CCHSi)]; -3.0, -2.9, -2.7, -2.6 [Si(CCOSi)]; 9.5, 9.7 [Si(C-CCO)] ppm; $J(^{29}\text{Si}-^{1}\text{H}) = 177.3$ Hz. IR: v(SiOSi) 1051; $\delta(\text{CH}_3\text{Si})$ 1246, 1261; $\delta(\text{PhSi})$ 1409, 1428; v(SiH) 2122 cm⁻¹.

1-Hydrido-1,1,3,3,3-pentamethyl-2-methyl-2-phenyltrisilan (16b): $C_{12}H_{24}Si_3$ (252.58). MS (EI, 70eV): m/z(%) = 252 (9) [M]⁺, 237 (10) [M – Me]⁺, 193 (47) [M – SiMe₂H]⁺, 178 (86) [Me₃SiSiPh]⁺, 135 (100), 105 (21), 73 (47) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.155$ (d, Me₂HSi, 6H), 0.161 (s, Me₃Si, 9H), 0.42 (s, MePhSi, 3H), 4.19 (septet,H Si, 1H), 7.13–7.51 (m, PhSi, 5H) ppm. ¹³C-NMR: $\delta = -8.7$ (MeSi), -5.6 (Me₂HSi), -1.3(Me₃Si); PhSi 134.9 (C-1), 133.6 (C-2), 129.9 (C-3), 128.4 (C-4) ppm. ²⁹Si-NMR: $\delta = -46.0$ [Si(CCSiSi)], -37.6 [Si(CCHSi)], -16.1 [Si(CCCSi)] ppm; ¹J(²⁹Si-¹H) = 176.3 Hz.

3.4.3. Abfangprodukte der Lithiumsilanide aus der Umsetzung von **3** mit Lithium

THF, -78°C, Abfangreagenz Me₃SiCl.

Destillation des Rückstandes über eine kleine Vigreux-Kolonne ergibt zwei Fraktionen (84–130°C/0.03 Torr), die **22**, **23a** und **25a** in unterschiedlichen Anteilen enthalten und zwei Fraktionen (130–160°C/0.03 Torr), die aus Gemischen von **23a**, **24a** und **25a** bestehen. Im Destillationsrückstand kristallisiert das Tetrasilan **26a** aus, das durch Umkristallisation aus *n*-Hexan gereinigt wird. Durch präparative GC wird aus einer Fraktion **25a** rein gewonnen.

Trapp-Mischung, -110° C, Abfangreagenz Me₃Si-Cl. Destillation des öligen Rückstandes über eine Spaltrohrkolonne (90–160°C/0.03 Torr) ergibt vier Fraktionen, die **22** und **23a** (90–95°C), reines **23a** (95–97°C), **23a** und **25a** (97–130°C) sowie **23a**, **25a** und **24a** (130–160°C) enthalten. Im Destillationsrückstand kristallisiert **24a** aus. Umkristallisation aus *n*-Hexan führt zu reinem **24a**.

THF, -78°C, Abfangreagenz HMe₂SiCl.

Destillation des öligen Rückstandes über eine Spaltrohrkolonne ($85-120^{\circ}C/0.03$ Torr) ergibt vier Fraktionen, die 22 und 23b ($85-89^{\circ}C$), reines 23b ($89-91^{\circ}C$), 23b und 25b ($91-109^{\circ}C$) und reines 25b ($109-111^{\circ}C$) enthalten. Im Destillationsrückstand kristallisiert ein Gemisch von 24b und 26b aus. 24b läßt sich durch Umkristallisation aus *n*-Hexan rein gewinnen.

1-Trimethylsiloxy-1,1-diphenyl-2,2,2-trimethyl-disilan (23a): Ausbeute: 2.7 g (22%). Sdp.: 95–97°C (0.03 Torr). MS (EI, 70eV): m/z (%) = 344 (14) [M]⁺, 329 (10) [M – Me]⁺, 271 (100) [M – SiMe₃]⁺, 193 (95) [M – SiMe₃ – C₆H₆]⁺, 73 (12) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.13$ (s, Me₃SiSi, 9H), 0.22 (s, Me₃SiO, 9H), 7.20– 7.69 (m, PhSi, 10H) ppm. ¹³C-NMR: $\delta = -1.6$ (Me₃Si), 2.2 (Me₃SiO); PhSi 136.6 (C-1), 134.2 (C-2), 129.4 (C-3), 127.8 (C-4) ppm. ²⁹Si-NMR: $\delta = -22.3$ [Si(CCCSi)], -11.6 [Si(CCOSi)], 9.5 [Si(CCCO)] ppm. Anal. gef. C, 62.89; H, 8.25. C₁₈H₂₈OSi₃ (344.681) ber.: C, 62.72; H, 8.19%.

1-Trimethylsiloxy-1,1,2,2-tetraphenyl-3,3,3-trimethyltrisilan (**24a**): Ausbeute: 2.4 g (13%). Schmp.: 221– 222°C. MS (EI, 70eV): m/z (%) = 526 (4) [M]⁺, 511 (3) [M – Me]⁺, 453 (4) [M – SiMe₃]⁺, 376 (54) [M – SiMe₃ – Ph]⁺, 271 (100) [Me₃SiOSiPh₂]⁺, 73 (10) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.15$ (s, Me₃SiOi, 9H), 0.22 (s, Me₃SiO, 9H), 7.15–7.77 (2 × m, PhSi, 20H) ppm. ¹³C-NMR: $\delta = -0.5$ (Me₃Si), 2.3 (Me₃SiO); Ph₂SiO 137.1 (C-1), 136.9 (C-2), 129.9 (C-3), 128.1 (C-4); Ph₂Si 136.9 (C-1), 135.0 (C-2), 129.9 (C-3), 128.1 (C-4) ppm. ²⁹Si-NMR: $\delta = -44.0$ [Si(CCSiSi)], -15.7 [Si(CCCSi)], -11.6 [Si(CCOSi)], 10.9 [Si(CCCO)] ppm. Anal. gef. C, 67.92; H, 7.21. C₃₀H₃₈OSi₄ (526.981) ber.: C, 68.38; H, 7.27%.

1,1,1,3,3,3-Hexamethyl-2,2-diphenyl-trisilan (25a) [41,42]: $C_{18}H_{28}Si_3$ (328.68). MS (EI, 70eV): m/z (%) = 328 (47) [M]⁺, 313 (14) [M – Me]⁺, 255 (100) [M – SiMe_3]⁺, 178 (80) [Me_3SiSiPh]⁺, 73 (30) [SiMe_3]⁺. ¹H-NMR: $\delta = 0.23$ (s, Me_3Si, 18H), 7.17–7.59 (m, PhSi, 10H) ppm. ¹³C-NMR: $\delta = -0.4$ (Me_3Si); PhSi 136.3 (C-1), 134.5 (C-2), 128.7 (C-3), 128.3 (C-4) ppm. ²⁹Si-NMR: $\delta = -39.1$ [Si(CCSiSi)], -16.4 [Si(CCCSi)] ppm.

1,1,1,4,4,4-Hexamethyl-2,2,3,3-tetraphenyl-tetrasilan (**26a**) [22,42]: Die analytischen Daten stimmen mit denen in [22] und [42] überein.

1 - Trimethylsiloxy - 1,1 - diphenyl - 2 - hydrido - 2,2 - dimethyl-disilan (**23b**): Ausbeute: 1.6 g (14%). Sdp.: 89– 91°C (0.3 Torr). MS (EI, 70eV): m/z (%) = 330 (9) [M]⁺, 315 (7) [M – Me]⁺, 271 (96) [M – SiMe₂H]⁺, 193 (100) [M – SiMe₂H – C₆H₆]⁺, 135 (15). ¹H-NMR: $\delta = 0.12$ (s, Me₃SiO, 9H), 0.20 (d, Me₂HSi, 6H), 4.22 (septet, HSi, 1H), 7.14–7.66 (m, PhSi, 10H) ppm. ¹³C-NMR: $\delta = -6.2$ (Me₂HSi), 2.3 (Me₃SiO); PhSi 134.5 (C-1), 134.4 (C-2), 129.8 (C-3), 128.3 (C-4) ppm. ²⁹Si-NMR: $\delta = -43.7$ [Si(CCHSi)], -11.7 [Si(CCOSi)], 10.1 [Si(CCCO]] ppm; $J(^{29}Si^{-1}H) = 176.2$ Hz. IR: v(SiOSi) 1064; δ (CH₃Si) 1252, 1261; δ (PhSi) 1428; v(SiH) 2090 cm⁻¹. Anal. gef. C, 61.66; H, 7.80. C₁₇H₂₆OSi₃ (330.648) ber.: C, 61.75; H, 7.93%.

1-Trimethylsiloxy-1,1,2,2-tetraphenyl-3-hydrido-3,3dimethyl-trisilan (**24b**): Ausbeute: 2.3 g (13%). Schmp.: 81–82°C. MS (EI, 70eV): m/z (%) = 512 (2) [M]⁺, 497 (3) [M – Me]⁺, 453 (3) [M – SiMe₂H]⁺, 375 (19) [M – SiMe₂H – C₆H₆]⁺, 271 (100) [Me₃SiOSiPh₂]⁺, 240 (76) [Me₂SiSiPh₂]⁺, 193 (90) [M – SiPh₂SiMe₂H – C₆H₆]⁺, 135 (19). ¹H-NMR: δ = 0.15 (s, Me₃SiO, 9H), 0.22 (d, Me₂HSi, 6H), 4.43 (septet, HSi, 1H), 7.14–7.75 (2 × m, PhSi, 20H) ppm. ¹³C-NMR: δ = – 5.2 (Me₂HSi), 2.4 (Me₃SiO) ppm. PhSi 136.9 (C-1), 135.0 (C-2), 128.4 (C-3), 128.2 (C-4) ppm. ²⁹Si-NMR: δ = – 44.1 [Si(CC- SiSi)], -37.0 [Si(CCHSi)], -12.1 [Si(CCOSi)], 10.8 [Si(CCCO)] ppm; $J(^{29}\text{Si}^{-1}\text{H}) = 179.4$ Hz. IR: v(SiOSi)1067; $\delta(\text{CH}_3\text{Si})$ 1252, 1259; $\delta(\text{PhSi})$ 1428, 1460; v(SiH)2095 cm⁻¹. Anal. gef. C, 67.14; H, 6.98. C₂₉H₃₆OSi₄ (512.945) ber.: C, 67.91; H, 7.07%.

1-Hydrido-1,1,3,3,3-pentamethyl-2,2-diphenyl-trisilan (25b): Ausbeute: 1.2 g (11%). Sdp.: 109–111°C (0.3 Torr). MS (EI, 70eV): m/z (%) = 314 (20) [M]⁺, 299 (11) [M – Me]⁺, 255 (41) [M – SiMe₂H]⁺, 240 (100) [Me₂SiSiPh₂]⁺,197 (48), 135 (74), 73 (22) [SiMe₃]⁺. ¹H-NMR: δ = 0.24 (s, Me₃Si, 9H), 0.24 (d, Me₂HSi, 6H), 4.36 (septet, HSi, 1H), 7.11–7.61 (m, PhSi, 10H) ppm. ¹³C-NMR: δ = – 5.2 (Me₂HSi), – 0.5 (Me₃Si); PhSi 136.3 (C-1), 135.5 (C-2), 128.9 (C-3), 128.4 (C-4) ppm. ²⁹Si-NMR: δ = – 39.4 [Si(CCSiSi)], – 38.4 [Si(C-CHSi)], –16.2 [Si(CCCSi]] ppm; $J(^{29}Si^{-1}H)$ = 177.4 Hz. IR: δ (CH₃Si) 1246, 1261; δ (PhSi) 1428; ν (SiH) 2086 cm⁻¹. Anal. gef. C, 64.80; H, 8.19. C₁₇H₂₆Si₃ (314.649) ber.: C, 64.89; H, 8.33%.

1,4-Dihydrido-1,1,4,4-tetramethyl-2,3-tetraphenyl-tetrasilan (**26b**): $C_{28}H_{34}Si_4$ (482.93). MS (EI, 70eV): m/z (%) = 482 (2) [M]⁺, 467 (3) [M – Me]⁺, 423 (5) [M – SiMe₂H]⁺, 346 (53) [HMe₂SiSiPh₂SiPh]⁺, 241 (59) [HMe₂SiSiPh₂]⁺, 197 (84), 135 (62), 105 (100). ¹H-NMR: $\delta = 0.24$ (d, Me₂HSi, 12H), 4.45 (septet, HSi, 2H), 7.15–7.71 (m, PhSi, 20H) ppm. ¹³C-NMR: $\delta = -5.1$ (Me₂HSi); PhSi 138.8 (C-1), 135.9 (C-2), 128.8 (C-3), 128.4 (C-4) ppm. ²⁹Si-NMR: $\delta = -38.3$ [Si(CC-SiSi)], -36.1 [Si(CCHSi)] ppm; $J(^{29}Si^{-1}H) = 179.4$ Hz.

3.5. Umsetzung eines Gemisches von **2** und Chlortrimethylsilan im Molverhältnis 1:2 mit Lithium

Zu 0.14 mol Li-Spänen in 70 ml THF wird unter starkem Rühren bei - 78°C ein Gemisch von 0.035 mol 2 und 0.07 mol Me₃SiCl, gelöst in 30 ml THF, getropft. Nach einer Reaktionszeit von 2 h bei - 78°C (2 wurde völlig umgesetzt) wird von der dunkelbraunen Lösung das überschüssige Lithium abgetrennt. Zu der Lösung werden bei -78° C unter Rühren 0.07 mol Me₃SiCl getropft. Dann wird die Lösung 4.5 h bei - 78°C und 24 h bei Raumtemperatur stehengelassen. Die Aufarbeitung des Reaktionsgemisches analog Section 3.4 führt zu einem öligen Rückstand. Destillation des Rückstandes über eine kleine Vigreux-Kolonne ergibt drei Fraktionen (53-70°C/0.1 Torr), die 12, 13a und 16a in unterschiedlichen Anteilen enthalten. Zwei weitere Fraktionen (125-150°C/0.1 Torr) bestehen aus Gemischen von 14a und 17. Durch präparative GC gelingt die Abtrennung von 1,1,1,3,3,3-Hexamethyl-2methyl-2-phenyl-trisilan (16a) aus den Gemischen mit 12 und 13a.

16a [43,44]: $C_{13}H_{26}Si_3$ (266.61). MS (EI, 70eV): m/z(%) = 266 (10) [M]⁺, 251 (5) [M - Me]⁺, 193 (51) [M - SiMe₃]⁺, 135 (25), 73 (100) [SiMe₃]⁺. ¹H-NMR: $\delta = 0.01$ (s, Me₃Si, 18H), 0.41 (s, MeSi, 3H), 7.08-7.56 (m, PhSi, 5H) ppm. ¹³C-NMR: $\delta = -8.9$ (MeSi), -1.0 (Me₃Si); PhSi 137.6 (C-1), 134.7 (C-2), 129.3 (C-3), 127.6 (C-4) ppm. ²⁹Si-NMR: $\delta = -46.5$ [Si(CCSiSi)], -16.2 [Si(CCCSi)] ppm.

3.6. Umsetzung eines Gemisches von 2 und Me₃SiCl im Molverhältnis 1:6 mit Lithium, Darstellung von 1-Trimethylsiloxy-1-[3,4,5,6-tetrakis(trimethysilyl) cyclohex-1-enyl]-tetramethyl-disilan (17)

Zu 0.25 mol Li-Spänen in 70 ml THF wird unter starkem Rühren bei -78° C ein Gemisch von 0.04 mol 2 und 0.24 mol Me₃SiCl, gelöst in 30 ml THF, getropft. Nach einer Reaktionszeit von 18 h bei -78° C wird das Reaktionsgemisch auf Raumtemperatur erwärmt, das nicht umgesetzte Lithium abgetrennt und die Lösung analog Section 3.4 aufgearbeitet. Fraktionierte Destillation des nach Aufarbeitung erhaltenen Rohproduktes führt zu einer Fraktion mit reinem 17.

17: Ausbeute: 4.1 g (18%). Sdp.: 149–151°C (0.02 Torr). GC: Diastereomerengemisch ca. 1.5:1. MS (EI, 70eV): m/z (%) = 574 (5) [M]⁺, 559 (81) [M – Me]⁺, 501 (5) $[M - SiMe_3]^+$, 355 (51), 205 (100) $[Me_3SiOSiMeSiMe_3]^+$, 73 (58) $[SiMe_3]^+$. ¹H-NMR: $\delta = 0.12 - 0.15$ (Me₃SiSi, 9H); 0.16–0,22 (MeSi, Me₃SiO, 12H); 0.24-0.32 (Me₃SiC, 36H); 1.14-2.44 (HCSi, 4H); 5.93, 6.18 (2 × d, 1.5: 1, HC=, 1H) ppm. ²⁹Si-NMR: $\delta = -22.5, -22.3$ [Si(CCCSi)]; -8.2, -7.8 [Si(CCOSi)]; -1.2 bis 3.3 [Si(CCCC)]; 7.0, 7.2 [Si(CCCO)] ppm. Anal. gef. C, 52.05; H, 10.71. C₂₅H₆₂OSi₇ (575.374) ber.: C, 52.19; H, 10.86%.

3.7. Umsetzung eines Gemisches von **3** und Me₃SiCl im Molverhältnis 1:10 mit Lithium, Darstellung von 1,1-Bis[3,4,5,6-tetrakis(trimethylsilyl)cyclohex-1-enyl]-1trimethylsiloxy-trimethyl-disilan (**27**)

Zu 0.33 mol Li-Spänen in 70 ml THF wird unter Rühren bei - 78°C ein Gemisch von 0.03 mol 3 und 0.30 mol Me₃SiCl, gelöst in 30 ml THF, getropft. Nach einer Reaktionszeit von 24 h bei - 78°C (3 war nicht mehr nachweisbar) werden nicht umgesetztes Lithium und partiell ausgefallenes LiCl abgetrennt. Anschließend wird das Reaktionsgemisch auf Raumtemperatur erwärmt. Die hellgelbe Lösung wird analog Section 3.4 aufgearbeitet. Aus dem öligen Rückstand kristallisiert teilweise 27 aus. Die Kristalle werden abfiltriert und mit wenig n-Pentan gewaschen und aus *n*-Heptan umkristallisiert. Das Filtrat wird über eine kleine Vigreux-Kolonne destilliert (78-168°C/0.02 Torr). Es werden Fraktionen mit Gemischen von 22 und 23a sowie von 24a und 27 erhalten. Im Destillationsrückstand liegt noch weiteres 27 vor.

27: Ausbeute: 2.8 g (10%). Schmp.: 197–198°C. GC: Diastereomerengemisch ca. 1:1.5. MS (EI, 70eV): m/z (%) = 928 (2) [M]⁺, 913 (5) [M – Me]⁺, 855 (11) [M –

SiMe₃]⁺, 559 (32) $[M - C_6H_5(SiMe_3)_4]^+$, 73 (100) $[SiMe_3]^+$. ¹H-NMR: $\delta = 0.18$ (s, Me₃SiSi, 9H); 0.20 (s, Me₃SiO, 9H); 0.24–0.44 (Me₃SiC, 72H); 1.15–2.45 (HCSi, 8H); 6.04 (d, J = 5,6 Hz), 6.0(d, J = 5.6 Hz), 6.18 (d, J = 5.9 Hz), 6.20 (d, J = 5.4 Hz) (4 HC=C, 2H) ppm. ²⁹Si-NMR: $\delta = -22.1$, -21.7 [Si(CCCSi)]; -18.7, -18.0 [Si(CCCSi)]; -1.0, -0.9, 0.9, 1.0, 3.0, 3.1, 3.3, 3.4 [Si(CCCC)]; 5.7, 6.1 [Si(CCCO)] ppm. IR: ν (SiOSi) 1031; δ (CH₃Si) 1249; ν (C=C) 1585 cm⁻¹. Anal. gef. C, 54.11; H, 10.63. C₄₂H₁₀₀OSi₁₁ (930.211) ber.: C, 54.23; H, 10.84%.

Anerkennung

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- G. Köbrich, Angew. Chem. 84 (1972) 557; Angew. Chem. Int. Ed. Engl. 11 (1972) 473.
- [2] D. Seebach, H. Siegel, J. Gabriel, R. Hässig, Helv. Chim. Acta 63 (1980) 2046.
- [3] H. Siegel, Top. Curr. Chem. 106 (1982) 55.
- [4] D. Seebach, R. Hässig, J. Gabriel, Helv. Chim. Acta 66 (1983) 30.
- [5] P. v. Rague Schleyer, T. Clark, A.J. Kos, G.W. Spitznagel, C. Rohde, D. Arad, K.W. Houk, W.G. Rondan, J. Am. Chem. Soc. 106 (1984) 6467.
- [6] G. Boche, A. Opel, M. Marsch, K. Harms, F. Halter, J.C.W. Lohrenz, C. Tümmler, W. Koch, Chem. Ber. 125 (1992) 2265.
- [7] G. Boche, M. Marsch, A. Müller, K. Harms, Angew. Chem. 105 (1993) 1081; Angew. Chem. Int. Ed. Engl. 32 (1993) 1032.
- [8] A. Maercker, Angew. Chem. 105 (1993) 1072; Angew. Chem. Int. Ed. Engl. 32 (1993) 1023.
- [9] G. Boche, F. Bosold, J.C.W. Lohrenz, A. Opel, R. Zulauf, Chem. Ber. 126 (1993) 1873.
- [10] M. Topolski, M. Duraisamy, J. Rachon, J. Gawronski, K. Gawronska, V. Goedken, H.M. Walborsky, J. Org. Chem. 58 (1993) 546.
- [11] A. Müller, M. Marsch, K. Harms, J.C.W. Lohrenz, G. Boche, Angew. Chem. 108 (1996) 1639; Angew. Chem. Int. Ed. Engl. 35 (1996) 1518.
- [12] M. Shimizu, T. Hata, T. Hiyama, Tetrahedron Lett. 38 (1997) 4591.
- [13] M. Braun, Angew. Chem. 110 (1998) 444; Angew. Chem. Int. Ed. Engl. 37 (1998) 430.
- [14] P. Beak, W.J. Zajdel, Chem. Rev. 84 (1984) 471.
- [15] W.H. Pearson, A.C. Lindbeck, J.W. Kampf, J. Am. Chem. Soc. 115 (1993) 2622.
- [16] A.F. Burchat, J.M. Chang, S.B. Park, Tetrahedron Lett. 34 (1993) 51.
- [17] I. Goldham, R. Hutton, D.J. Snowden, J. Am. Chem. Soc. 118 (1996) 5322.
- [18] J. Ortiz, A. Guijarro, M. Yus, Tetrahedron 55 (1999) 4831.
- [19] K. Tamao, A. Kawachi, Adv. Organomet. Chem. 38 (1995) 1.
- [20] A. Kawachi, K. Tamao, Bull. Chem. Soc. Jpn. 70 (1997) 945.
- [21] K. Tamao, A. Kawachi, Y. Ito, J. Am. Chem. Soc. 114 (1992) 3989.

- [22] K. Tamao, A. Kawachi, Organometallics 14 (1995) 3108.
- [23] A. Kawachi, N. Doi, K. Tamao, J. Am. Chem. Soc. 119 (1997) 233.
- [24] I. Rietz, E. Popowski, H. Reinke, M. Michalik, J. Organomet. Chem. 556 (1998) 67.
- [25] A. Kawachi, K. Tamao, Organometallics 15 (1996) 4653.
- [26] K. Tamao, A. Kawachi, Angew. Chem. 107 (1995) 886; Angew. Chem. Int. Ed. Engl. 34 (1995) 818.
- [27] Y. Tanaka, M. Hada, A. Kawachi, K. Tamao, Organometallics 17 (1998) 4573.
- [28] P. Boudjouk, U. Samaraweera, R. Sooriyakumaran, J. Chrisciel, K.R. Anderson, Angew. Chem. 100 (1988) 1406; Angew. Chem. Int. Ed. Engl. 27 (1988) 1355.
- [29] T. Tsumuraya, S.A. Batcheller, S. Masamune, Angew. Chem. 103 (1991) 916; Angew. Chem. Int. Ed. Engl. 30 (1991) 902.
- [30] R. Corriu, G. Lanneau, C. Priou, F. Soulairol, N. Auner, R. Probst, R. Conlin, Ch. Tan, J. Organomet. Chem. 466 (1994) 55.
- [31] P.D. Lickiss, C.M. Smith, Coord. Chem. Rev. 145 (1995) 75.
- [32] H. Gilman, R.L. Harrell, C.L. Smith, K. Shiina, J. Organomet. Chem. 5 (1966) 387.
- [33] D. Reyx, J.M. Martins, I. Campistron, F. Huet, Bull. Soc. Chim. France 131 (1994) 1007.
- [34] M.V. George, H. Gilman, J. Organomet. Chem. 5 (1969) 89.

- [35] G.A. Razuvaev, V.V. Semenov, T.N. Brevnova, A.N. Kornev, Zh. Obshch. Khim. 56 (1986) 884.
- [36] G.A. Razuvaev, T.N. Brevnova, V.V. Semenov, A.N. Kornev, M.A. Lopatin, N.A. Egorochkin, Zh. Obshch. Khim. 57 (1987) 375.
- [37] V.V. Semenov, T.V. Brevnova, S.Ya. Khorshev, Zh. Obshch. Khim. 53 (1983) 2085.
- [38] V.V. Semenov, A.N. Kornev, T.N. Brevnova, G.A. Razuvaev, Zh. Obshch. Khim. 59 (1989) 151.
- [39] M. Kumada, M. Ishikawa, M. Sajiro, J. Organomet. Chem. 2 (1964) 473.
- [40] M.A. Cook, C. Eaborn, D.R.M. Walton, J. Organomet. Chem. 23 (1970) 85.
- [41] R.A. Jackson, Ch.J. Rhodes, J. Organomet. Chem. 336 (1987) 45.
- [42] U. Baumeister, K. Schenzel, R. Zink, K. Hassler, J. Organomet. Chem. 543 (1997) 117.
- [43] E. Popowski, N. Holst, H. Kelling, Z. Anorg. Allg. Chem. 494 (1982) 166.
- [44] R. West, P. Nowakowski, P. Boudjouk, J. Am. Chem. Soc. 98 (1976) 5620.
- [45] T.N. Brevnova, V.V. Semenov, G.A. Razuvaev, Zh. Obshch. Khim. 51 (1981) 2010.
- [46] G. Bakassian, A. Bazouin, US-Pat. 3646088 (1972); CA 76 (1972) 153921.